1) Reduce the following grammar into CNF.S -> ABS | AA | A | &epsilon;A-> aAb | aBb | BB-> Bb | &epsilon;2) Let *G = (V,T,P,S)* be any CFG without *epsilon* productions or unit productions. Let *k* bethe maximum number of symbols on the right side of productions in *P*. Show that there is anequivalent grammar in Chomsky Normal Form with no more than *(k-1)|P| + |T|* productionrules. ( V is the set of variables, T the terminals, P the set of productions, and S the startsymbol)3) Prove that the following language is not context free using the context free pumpinglemma.L = {w &#1028; {a, b, c}*: #a(w) < #b(w) and #c(w) < #b(w)}

## Deliverables

in a word document

## Platform

windows xp

Kemahiran: PHP

Lihat lagi: bb&t, bb & t, bb t, bb and t, php bb, abb, aab, automata, context free chomsky normal form, chomsky normal, chomsky, chomsky normal form, epsilon, terminals, cnf, cfg, windows context, ABS

Tentang Majikan:
( 3 ulasan ) Turkey

ID Projek: #3451024

Dianugerahkan kepada:


See private message.

$12 USD dalam 4 hari
(15 Ulasan)