database browser and finding patterns in database records

Projek ini menerima 1 bida daripada freelancer berbakat dengan harga bida purata €250 EUR.

Dapatkan sebut harga percuma untuk projek seperti ini
Bajet Projek
€250 EUR
Jumlah Bida
Penerangan Projek

- Database - (preferred orientDB(!), graph Database) - but we might discuss and see ordinary SQL as enough

=> amount of records (1 - 25 Million) - each about 10 columns/fields (might be extended later on)

- GUI / Frontend needed to access Database data

- i would assume front end would be desktop app based

- but maybe a browser based frontend is also good (especially considering the cloud database aspect below.)

- no editing of data as part of user use case needed.

- use cases:

access data (browse data)

statistics on data

visualization data (graph/network type of visualization - optional)

analysis of data (on whole data set and parts of data sets)

- mostly straight forward data extraction tasks. some are more tricky (

visualization of result of analysis (graph/network type of visualization - optional)

in most cases it is only table and (dir-)tree representation

- the visualization / browsing / etc. should rely on lazy-load from database; as full dataset will not fit into memory / display-model

- Some analysis part is the tricky part. It basically should identify equal and (only) similar(!) data records and data record sub-sets (!) across the whole data set.

- the analysis part would benefit from parallelization. I could imagine putting the whole database in the cloud (e.g. AWS, google, etc.) and only keep the frontend local. - best would be if the backend data base can be configurable either local or in the cloud

- focus is on large amount of data, quick on the fly analysis of data, quick display - beauty is secondary.

Mencari untuk memperoleh sedikit wang?

  • Tetapkan bajet anda dan tempoh masa
  • Rangkakan cadangan anda
  • Dibayar untuk kerja anda

Upah Freelancer yang juga membida projek ini

    • Forbes
    • The New York Times
    • Time
    • Wall Street Journal
    • Times Online